

NCHRP 23–07: Effective Methods for Setting Transportation Performance Targets

TPM Webinar Series

Reliability (Travel Time and Freight), June 8, 2022

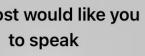
With support from

Agenda

- Welcome & Overview of Methods
- Presentation by Iowa DOT + Q&A
- Presentation by Virginia DOT + Q&A
- Discussion

Navigating Zoom

To view captions, look for CC at the bottom of the screen:

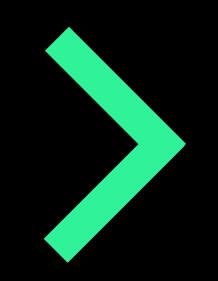

	Show Subtit	е	4		
	View Full Transcript				
	Subtitle Settings				
	CC	☺⁺			
rd	Live Transcript	Reactions			

To ask a question, type the question in the chat or click "Raise Hand" to be called on.

P Chat	u Raise Hand	
To: Everyon Type messag		More ∽

The ho
If you choose webinar will b host or pan livestream, or you unmu
Stay Mute

If your hand is raised, we will give you the capability to unmute and ask a question.



e to unmute, others in the be able to hear you. If the elists decide to record, archive the webinar after ute, your voice will be included.

Unmute

Guidebook Purpose

To help State DOTs and MPOs identify effective methods for setting transportation performance targets.

Part I. Target Setting Overview and Tips Introduction to Guidebook Target Setting Foundations Practical Application Tips

Part II. A Menu of Target Setting Methods Target Setting Methods for Safety Target Setting Methods for Infrastructure Condition Target Setting Methods for Reliability Target Setting Methods for Traffic Congestion

Part III. Target Setting for Non–Required Measures Why Use and Set Targets for Other Measures? Examples of Performance Measures and Targets

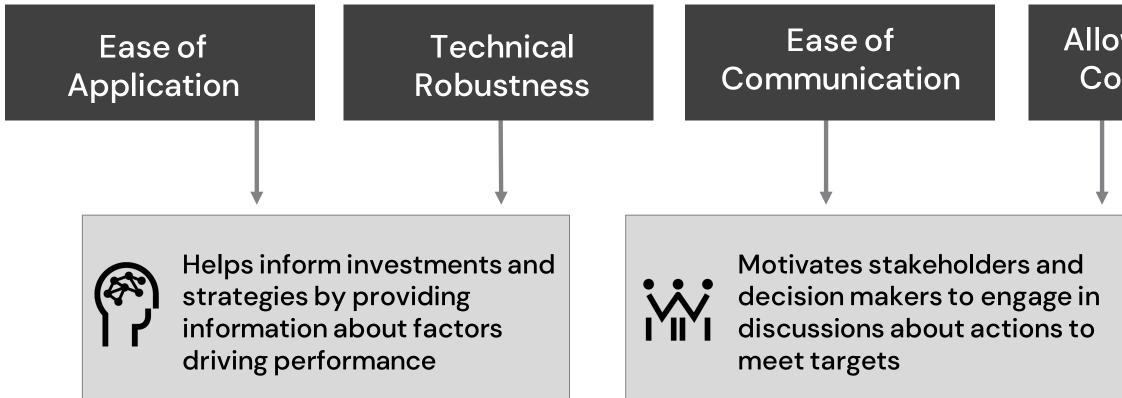
Types of Target Setting Methods Used

- Policy-Based
 - E.g., annual decrease of 3%
- Historical Trends
 - E.g., based on trend over past 5 years
- Probabilistic and Risk-based Approaches
 - E.g., considering potential variability in performance
- Statistical Models that account for Explanatory Factors
 - E.g., regression model
- Other Tools and Models
 - E.g., pavement management systems

Guidebook Part I: Target Setting Overview and Tips

Target setting philosophies

Realistic/ Predictive


Level most likely to occur

Aspirational Reflect commitment to improved outcomes

Guidebook Part I: Target Setting Overview and Tips

What Makes a Target Setting Method Effective?

Allows for Policy Consideration

Reliability (Travel Time and Freight) Performance Measures

1. Percent of the person-miles traveled on the Interstate that are reliable

2.Percent of person-miles traveled on the non-Interstate NHS that are reliable

3.Truck Travel Time Reliability (TTTR) Index

Travel Time Reliability

Freight Reliability

Guidebook Part II: Target Setting Methods

Simpler to implement &

More data

	Method	Strengths	Limitations	Other Co
int & icate	Building off Baseline, with Assumptions Maintaining the baseline level as the target or making an adjustment	Simple, easy to communicate and often brings in stakeholders.	No rigorous analytical methods are used for the adjustments.	Method f data. Age which exc relevant.
implement & communicate	based on judgement Time-Series Trend Analysis Forecast based simply on historical performance trend	Simple while still being data-driven.	No insights into causes of outcomes. Misses incorporation of new factors that may influence targets in the future.	May resu which car challenge agencies exogenou
	Trend Plus Other Factors Expands upon trend analysis to account for other factors that may shift future performance	Data-driven; allows for consideration of additional factors.	There may still be no rigorous methods for the adjustments – sometimes adjustments may not be data-driven.	May resu Agency w exogenou
	Performance Risk Analysis Uses monthly performance data to calculate a standard deviation and then uses the deviation to assess confidence level to set target	Data-driven; allows for deeper scrutiny of the observed variation in the past performance; helps to make an informed decision on the possible future range for the target	Data may be limited for robust analysis. No insight into causes of outcomes, unless paired with other method. Misses incorporation of new factors that may influence targets in the future.	Using targ lean towa targets w likelihooc
heavy	Segment Risk Analysis Focuses on segment-level data to assess segments that are at risk of shifting across the threshold of a "reliable" segment	Introduces secondary analysis onto the reliability calculation; more customized approach.	Requires additional, somewhat complex analysis of individual segments.	May resu
	Statistical Model Regression analysis or tool developed to account for various factors to predict performance; typically applied at the segment level	Fuller understanding of causes of outcomes, fully data-driven, and may support linking the target setting process with decision-making by informing what factors can be influenced	Complex, requiring analytical and data skills, and harder to communicate the method and nuance to stakeholders. May result in a worsening target.	A sophist significan depth kno statistica

Considerations

I for agencies with limited gency will need to decide exogenous factors are t.

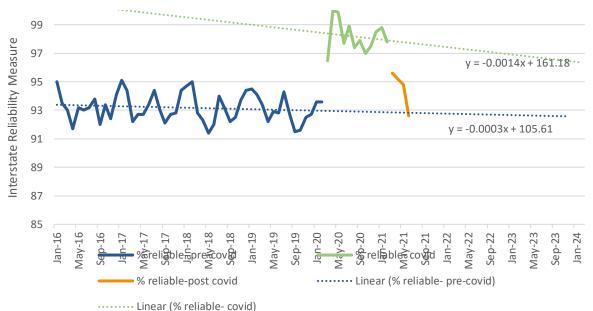
sult in a worsening target, an pose communication ges. Method may be useful for as with limited data about ous factors.

sult in a worsening target. will need to decide which ous factors are relevant.

arget ranges often seems to ward selecting conservative where there is a high od of meeting the target.

sult in a worsening target.

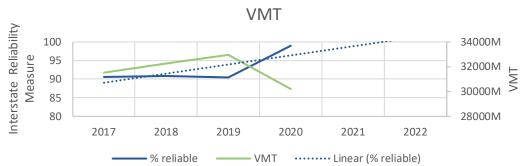
sticated model will require ant data gathering and in mowledge of application of cal models

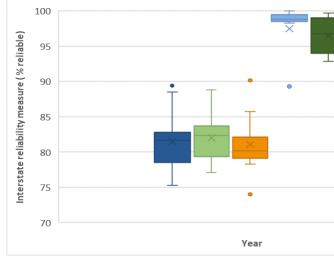

Guidebook Part II: Target Setting Methods

1. Building off Baseline

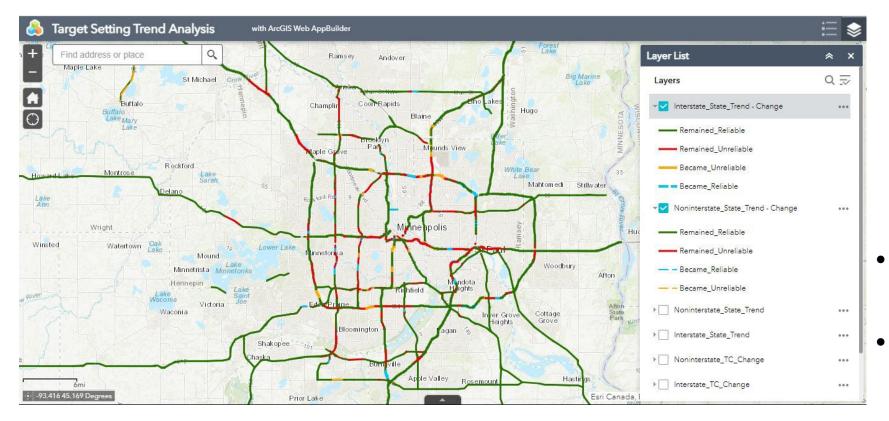
(Simple Data Driven method)

work well for agencies with limited data for trend analysis and limited data on external influencing factors.


> 2. Time-Series Trend (statistical analysis)


Source: Oklahoma DOT

(adjustments from other trends)


Source – Utah DOT

)	
	_
	2017
	2018
	2019
	2020
	2021

Source: Minnesota DOT 11

Guidebook Part II: Target Setting Methods

5. Segment Risk Analysis (Analysis of Individual Segments)

6. Statistical Model

(Sophisticated methods) Predicting performance on segment level based on statistical forecast models

- Remained Reliable (2019 and 2024 LOTTR <1.5)
- Remained Unreliable (2019 and 2024 LOTTR >1.5)
- **Became Reliable** (2019 LOTTR > 1.5and 2024 LOTTR < 1.5)
- Became Unreliable (2019 LOTTR < 1.5 and 2024 LOTTR > 1.5)

Presenters

Iowa DOT

Andrea Whyte

Method:

Travel Time and Freight Reliability Target Setting Approach

Virginia DOT

Sanhita Lahiri and Simona Babiceanu

Method:

Travel Time Reliability Target Setting Approach

Iowa DOT PM3 Targets

NCHRP 23-07 Workshop: Effective Travel Time and Freight Reliability Target Setting Methods

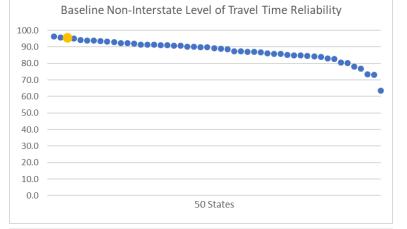
June 8, 2022

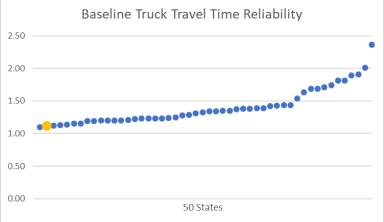
Overview

- Overall FHWA target-setting approach
- Initial PM3 target setting, 4-year target adjustments
- PM3 data for 2017-2021
- Lessons learned and moving forward

General approach to FHWA targets in 2018

Risk-based target setting approach


Develop prediction intervals, focus on probability of achieving targets


Method A: Develop trend model based on available history			Method B: Use available data to learn as much as we can about variability					
PM1 (5	Safety)	PM2 (I	PM2 (Bridge)		PM2 (Pavement)		PM3 (System Performance & Freight)	
Data from 1987 - 2017	Selected 75% confidence	Data from 2004 – 2016	Selected 75% confidence	Data from 2014 – 2017	Selected 75% confidence	Data from 2017	Selected 75% confidence	

2017 baselines for PM3

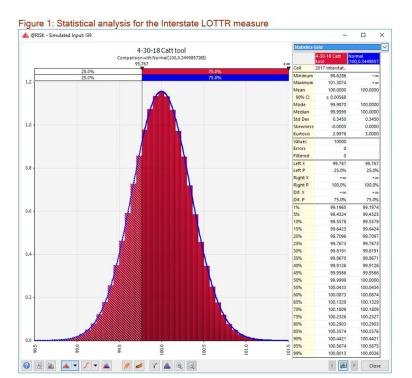
- Iowa's baselines (in yellow) were extremely reliable
- Without data history, likely future performance was unclear

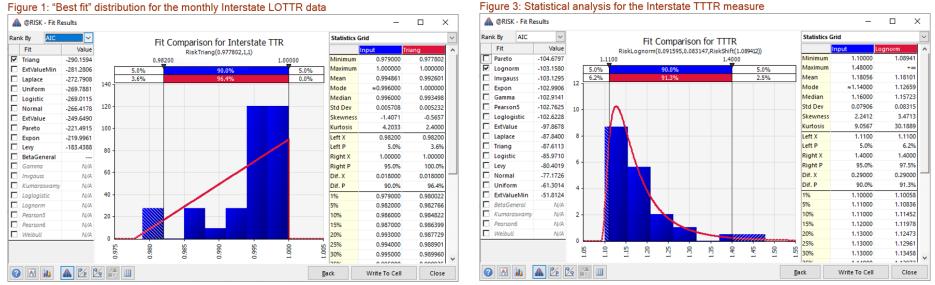
Baseline Interstate Level of Travel Time Reliability 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 50 States

Source: FHWA State Performance Dashboard

Initial target setting in 2018

- Only one year of data available; very high reliability
- Used monthly variability as a proxy for annual variability
- Calculated standard deviation
- Assumed normal distribution model
- Applied confidence level and rounding




Table 1: Level of travel time reliability for the Interstate System Monthly and annual output and targets at various confidence levels

Monthly and annual output a	
Month	CATT tool output
January 2017	100.0
February 2017	99.5
March 2017	100.0
April 2017	99.7
May 2017	99.7
June 2017	98.8
July 2017	99.8
August 2017	100.0
September 2017	99.7
October 2017	100.0
November 2017	100.0
December 2017	99.9
2017 Annual Baseline	100.0
Standard Deviation	0.345
Confidence Level	Target
70 percent	99.82%
75 percent	99.77%
80 percent	99.71%
85 percent	99.64%
90 percent	99.56%
95 percent	99.43%

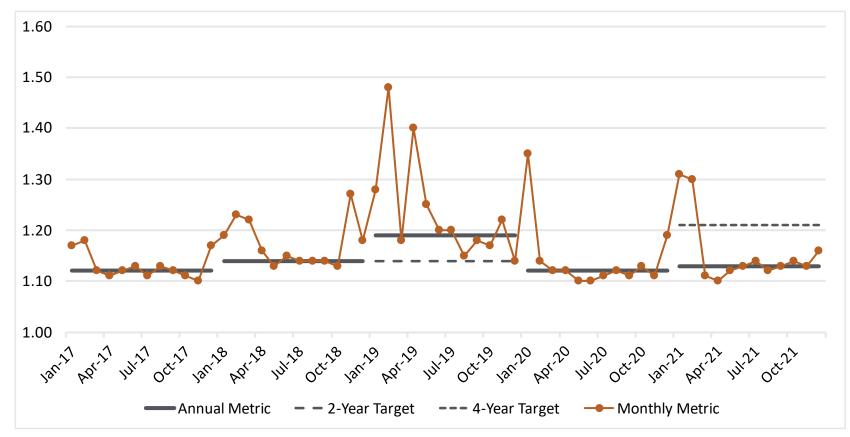
Adjusted targets in 2020

- Updated analysis with two additional years of annual and monthly data
- Changed distribution models for two measures; followed same process to calculate targets

https://iowadot.gov/systems_planning/Planning/Federal-Performance-Management-and-Asset-Management

PM3 Measures/Targets for 2018-2021 performance period

		First performance Period						
Performance measure	2017 Baseline	2018	2019 Mid-year	2020	2021 Final year	2-yr target	4-yr target ^{Original}	4-yr target <i>Adjusted</i>
Person-miles traveled on the Interstate that are reliable	100.0%	99.8%	99.3%	99.9%	99.9%	99.5%	99.5%	98.5%
Person-miles traveled on the non-Interstate NHS that are reliable	95.5%	96.3%	96.3%	96.8%	96.5%	N/A	95.0%	
Truck Travel Time Reliability (TTTR) Index	1.12	1.14	1.19	1.12	1.13	1.14	1.14	1.21


Interstate Level of Travel Time Reliability 2017-2021

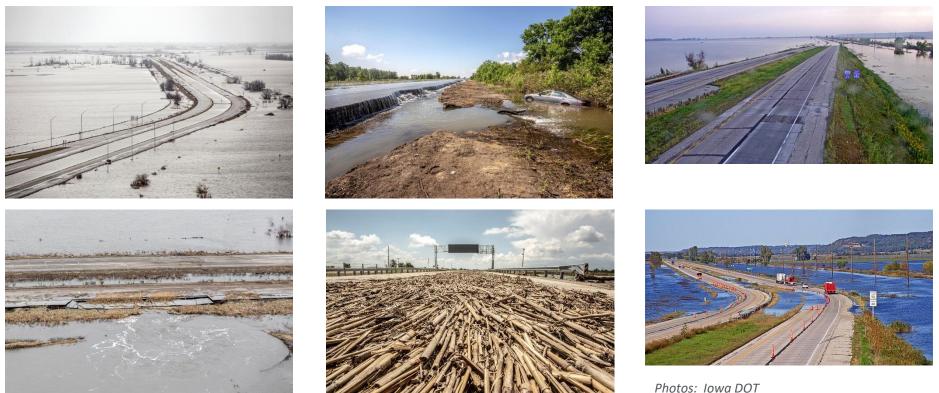
Data source: RITIS MAP-21 tool


Truck Travel Time Reliability Index 2017-2021

Data source: RITIS MAP-21 tool

Non-Interstate NHS Level of Travel Time Reliability 2017-2021

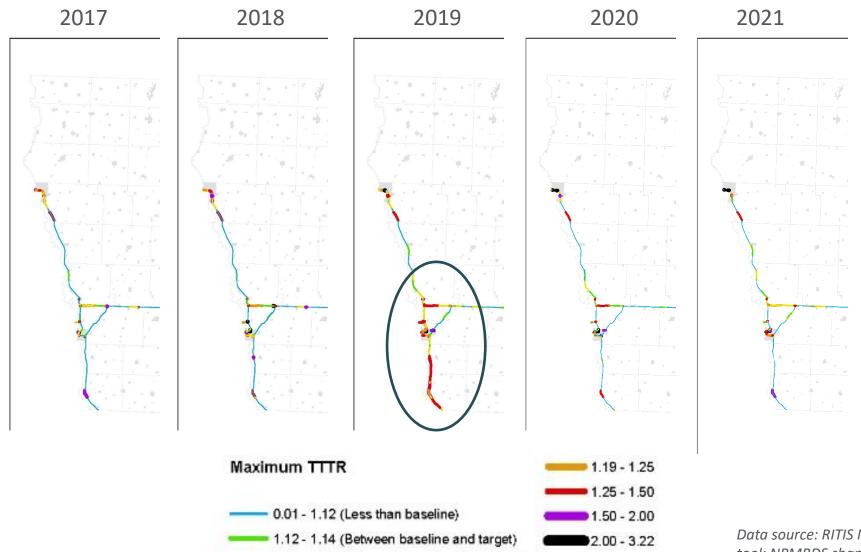
Data source: RITIS MAP-21 tool


What happened to the Interstate System in 2019?

Flooding in western lowa

I-29 in March

I-29 in June



 Effects of major natural disaster were reflected in Truck TTR index, but not in Interstate or non-Interstate LOTTR

Truck TTR: I-29

1.14 - 1.19 (Between target and 2-year value)

Data source: RITIS MAP-21 tool; NPMRDS shapefile

How much of the system was

"unreliable" in 2017-2021?

	2017	2018	2019	2020	2021
	Percent c	of mileage w	vith reliabilit	y metric as d	defined
	fo	or that perfo	rmance med	<i>isure >= 1.5</i>	
Interstate reliability	0.0%	0.1%	0.3%	0.1%	0.1%
Non-Interstate NHS reliability	3.7%	3.7%	3.9%	4.1%	3.7%
Freight reliability	2.4%	3.6%	5.0%	1.4%	1.8%

I-74 bridge construction in 2021

Source: Iowa DOT

Lessons learned

- Methodology pros and cons
 - Relatively straightforward
 - Data-driven
 - Risk-based
- MAP-21 tool ("easy button") pros and cons
 - Enables non-technical staff to work with data
 - Available to the state's MPOs
 - Time, effort, and resources required
 - Customization or ability to drill down into data
 - Data review
- Performance results
 - Show the potential impacts that construction work and natural disasters can have on statewide metrics
 - Of the five years available so far, 2019 was an outlier

Moving forward

- Continue internal review and clean-up of MAP-21 tool data; more in-depth review of performance
- Review other States' methodologies
- Apply lessons learned to future target setting; having such high reliability means that large construction projects or natural disasters can move the needle
- As more data become available, consider transition to trendbased or other methodology
- Continue to explore relationship between PM3 metrics and other data/metrics related to travel time reliability in the planning process
 - Long-range plan operations and bottlenecks analysis and integration into project prioritization
 - Project level efforts

THANK YOU

Andrea White, Statewide Planning Coordinator Andrea.White@iowadot.us

VIRGINIA'S TARGET SETTING METHODOLOGY FOR MAP-21 INTERSTATE TRAVEL TIME RELIABILITY MEASURE

NCHRP 23-07 Workshop: Effective Travel Time and Freight Reliability Target Setting Methods

Sanhita Lahiri, VDOT Simona Babiceanu, VDOT

June 8, 2022

Presentation Outline

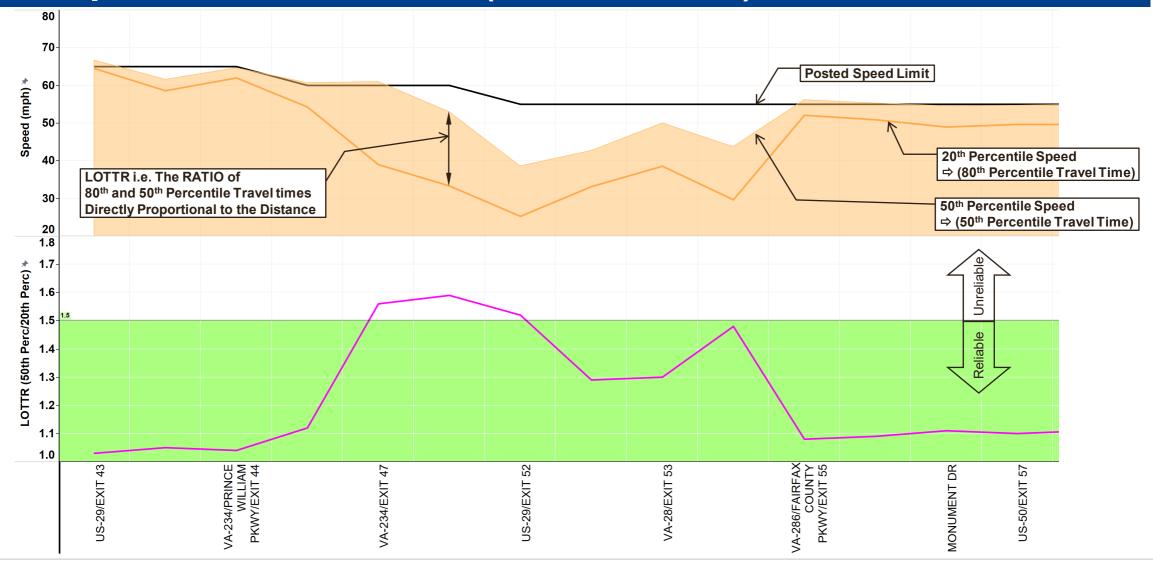
Metric, Measure, and Meaning

Target Setting

- Past and Future Data
- > Modeling
- > Prediction
- Questions

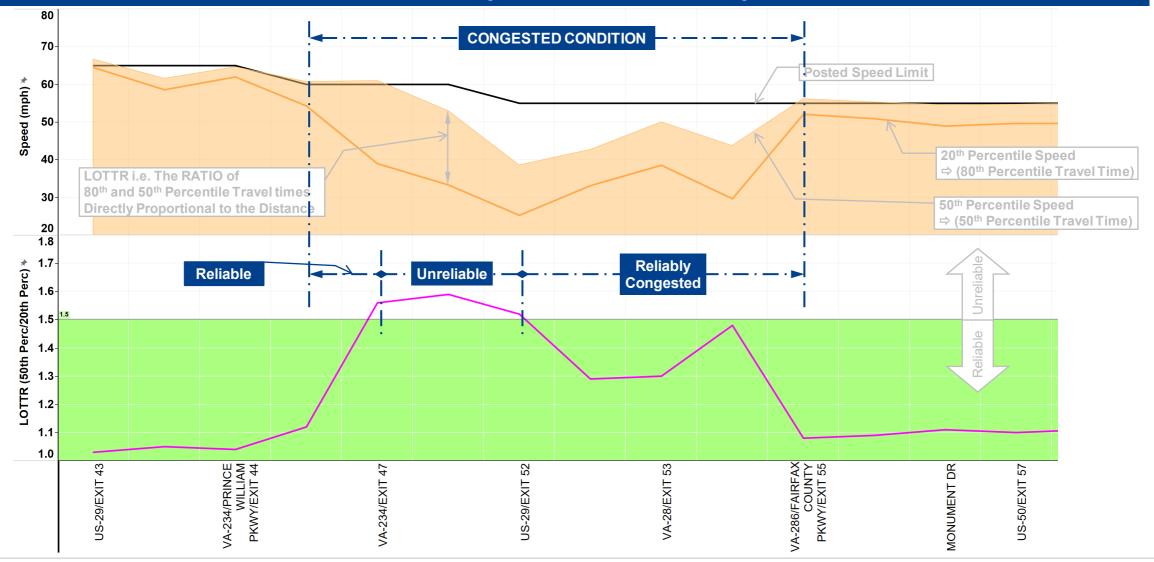
MAP-21 Requirement for Interstate Reliability Measure

- States:
 - Establish Interstate Travel Time Reliability Measure (PMTR-IS) targets
 for 2 and 4 years at Statewide and MPO levels
 - If necessary States may adjust target at 2 years
- FHWA:
 - Assess whether State achieved or made significant progress toward target every 2 years
 - If not, States have to provide explanations and take remedial actions


Moving Ahead for Progress in the 21st Century (MAP-21) Law

Travel Time Reliability Metric and Measure

- Metric: Level of Travel Time Reliability (LOTTR)
- Measure: Percent of Person Miles Traveled on the Interstate that are Reliable or Interstate Travel Time Reliability Measure (*PMTR-IS*)


	Formula	Example			
<u>Metric</u> LOTTR	80th Percentile Travel Time 50th Percentile Travel Time	LOTTR = 1.50 You have to add 50% more time to your normal travel time to arrive on-time on 4 out of 5 days			
LUTTR	A segment is Reliable when LOTTR < 1.5 in all 4 time periods**				
<u>Measure</u> PMTR-IS	100 × <mark>Total Reliable Person Miles on Interstate</mark> Total Person Miles on Interstate	<i>PMTR-IS in Year 2019 = 83.55% In Year 2019, 83.55% of the total miles traveled on the Interstate System is Reliable</i>			
** Time Period	<u>Weekdays</u> • AM Peak (6a - 10a) • Mid Day Peak (10a - 4p) • PM Peak (4p - 8p) <u>Weekends</u> • Majority hour of Traffic (6a - 8p)				

Example: I-66 EB AM Peak (6 AM – 10 AM)

Virginia's Target Setting Methodology for MAP-21 Interstate Travel Time Reliability Measure

Example: I-66 EB AM Peak (6 AM – 10 AM)

Virginia's Target Setting Methodology for MAP-21 Interstate Travel Time Reliability Measure

Target Setting Steps

- A. <u>Prepare Input</u> Data for Variables
- **B.** <u>Develop Model</u> for Prediction
- C. Validate Model and Predicted PMTR-IS
- D. <u>Prepare Future Year Data</u> by Predicting variables including running prediction model for crashes
- E. <u>Predict Target</u> for PMTR-IS for future years

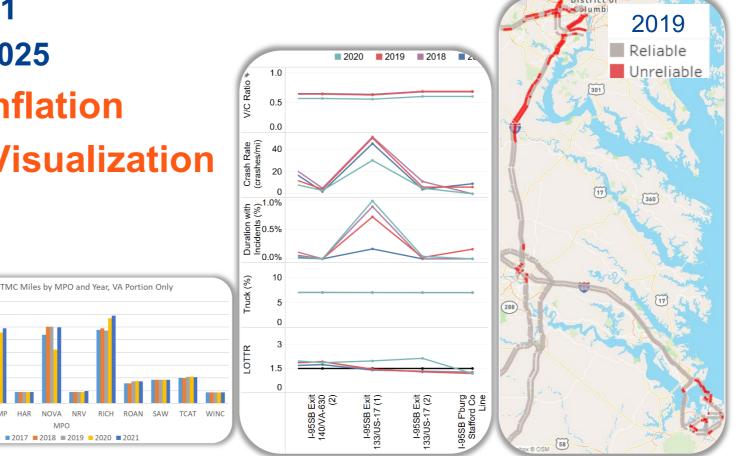
Segment is Reliable when LOTTR < 1.5 for all 4 time periods in one calendar year PMTR-IS = Interstate Travel Time Reliability Measure

Prepare Input

Interstate Speed and Travel Time – Potential Influencers

Roadway Geometry	Traffic	Urban Category
 Segment Length FHWA Network Number of Lanes Terrain 	 Annual Average Daily Traffic (AADT) Occupancy Factor Growth Rate of Daily Vehicle Miles Traveled Traffic Volume Heavy Vehicle % 	 Urbanized Urban Cluster Rural
Event	Operations Improvement Program	Roadway Improvement Types
CrashesIncidentsAdverse Weather	 Safety Service Patrol 	 Capacity Improvement Acceleration/ Deceleration Lane Extension

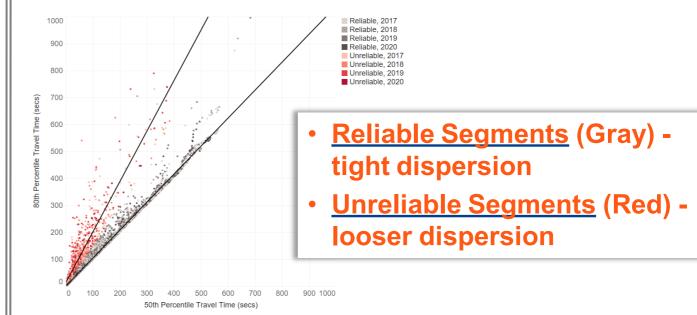
Based on Influencers, Identified 30 Independent Variables

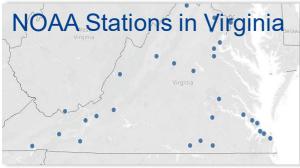

Data Collection, Preparation, and Exploration

80 percent of a data scientist's valuable time is spent simply finding, cleansing, and organizing data, leaving only 20 percent to actually perform analysis... IBM Data Analytics

- Data collected for Travel Time Reliability Influencers
 - Past Years: 2017 to 2021
 - Future Years: 2022 to 2025
- Data Cleaning and Conflation
- Data Exploration and Visualization

250


Establish Variables



Prepare Input

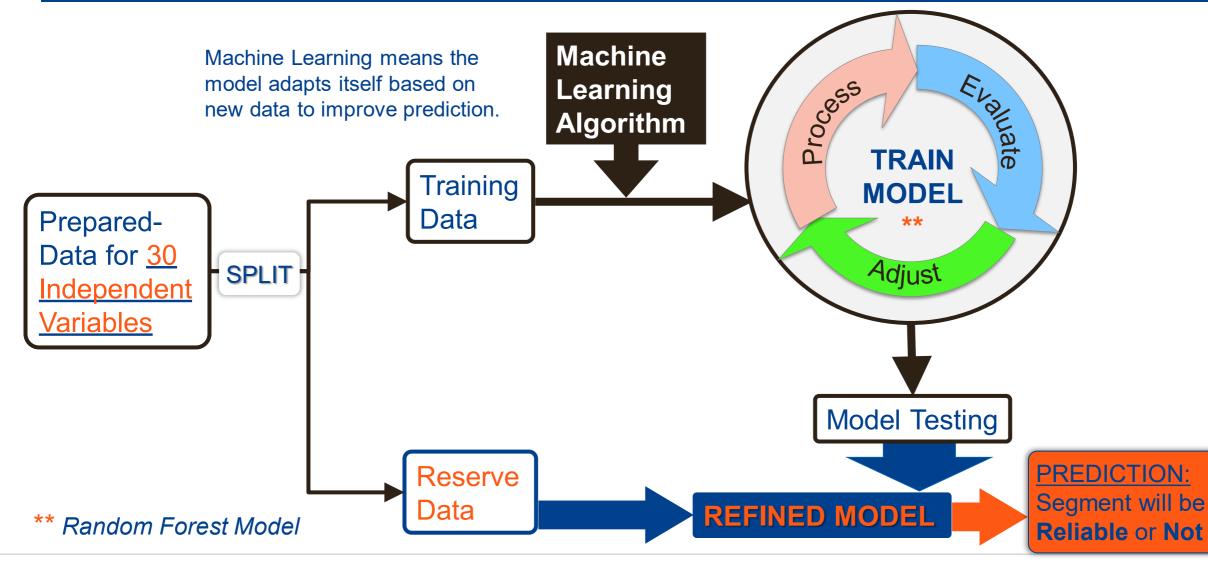
Examples of Issues with available Data

The measure is dependent on the network on which it is calculated, which can have variabilities

Fewer NOAA Weather Stations across the State necessitates extrapolation of Available Data, which can be inaccurate at smaller segment levels

Prepare Input

Independent Variables


Data Types	Independent Variables							
	Number of Lanes							
Roadway Geometry	Segment Length							
	Terrain							
	Urbanized							
Urban Category	Urban Cluster							
	Rural							
Independent Variables for each Time period AMP MIDD PMP								
T	Volume Capacity Ratio (<i>v/c</i>)	\checkmark	\checkmark	\checkmark	\checkmark			
Traffic	Heavy Vehicle (%)	\checkmark	\checkmark	\checkmark	\checkmark			
	Crashes (<i>Total Number</i>)		✓	\checkmark	\checkmark			
Event	Incident Duration (% time seg. has incident)		✓	\checkmark	\checkmark			
	Adverse Weather from NOAA (% time seg. has Adverse Weather)	\checkmark	\checkmark	\checkmark	\checkmark			
Ops Imprvmnt Prog	Ops Imprvmnt ProgSafety Service Patrol (% of time service available)✓✓				\checkmark			
Total Independent Variables Used in the Model = 30								

Methodology Exploration

- Modeling
 - Simple linear projection (no modeling)
 - Linear Model
 - Classification tree
- Model Prediction Outputs
 - LOTTR values
 - 80th & 50th %-ile travel times
 - 20th and 50th %-ile speeds
- Model Inputs
 - Separate data into reliable and unreliable sets
 - Eliminate Weekend data
 - Eliminate short segments (< 0.1 mi)
 - Treat crashes and incidents as rates per mile
 - Hourly volumes instead of V/C ratios

Random Forest model

Insight from Model Run

Significance of Independent Variables influencing Reliability:

- The higher on the Y-axis, the more important the variable
- 3 logical groups
 - Most significant: V/C and truck
 percentage
 - Significant: events, number of lanes
 - Least significant: Safety Service Patrol, terrain, urban cluster

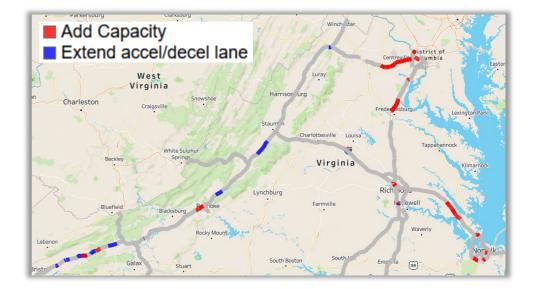
MIDD.Truck	·····	
WE.Truck		
AMP.Truck		
WE.VoverC	Most	
AMP.VoverC		
PMP.Truck	Significant 3	
MIDD.VoverC		
PMP.VoverC	Ű	
MIDD.crashes	0 >	_
PMP.crashes	°	
AMP.crashes	ŝ	
AMP.NOAA	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
WE.crashes		
PMP.inc		
PMP.NOAA	° Significant	
WE.NOAA	-	
MIDD.NOAA	-	
MIDD.inc		
lanes		
Urbanized		
WE.inc		
AMP.inc	0	
WE.SSP	• • • • • • • • • • • • • • • • • • •	
MIDD.SSP	° Least	
PMP.SSP		
Rolling	Significant	
AMP.SSP	oiginicant	
UrbanZCluster		

Model Validation

Step 1 of two-step validation process

	Testing Data Set Membership				Correct Predictions of Testing Data Set			
Year	Obs Rel Pred Rel	Obs Rel Pred Unrel	Obs Unrel Pred Rel	Obs Unrel Pred Unrel	Accuracy (All Segments)	Sensitivity (Reliable Segments)	Specificity (Unreliable Segments)	
2017	470	14	23	52	93.38%	97.11%	69.33%	
2018	462	13	22	54	93.65%	97.26%	71.05%	
2019	489	17	20	61	93.70%	96.64%	75.31%	
2020	520	4	13	10	96.89%	99.24%	43.48%	
2021	508	13	24	32	93.59%	97.50%	57.14%	
All	2450	61	103	209	94.19%	97.57%	66.99%	

Measure Validation


Step 2 of two-step validation process

Year	Predicted PMTR-IS	Actual PMTR-IS	Error
2017	82.71%	82.48%	0.28%
2018	82.87%	82.62%	0.30%
2019	83.30%	83.55%	-0.30%
2020	94.19%	93.80%	0.42%
2021	86.28%	86.25%	0.04%

Prepare Future Year Data

Prepare Future Year Data

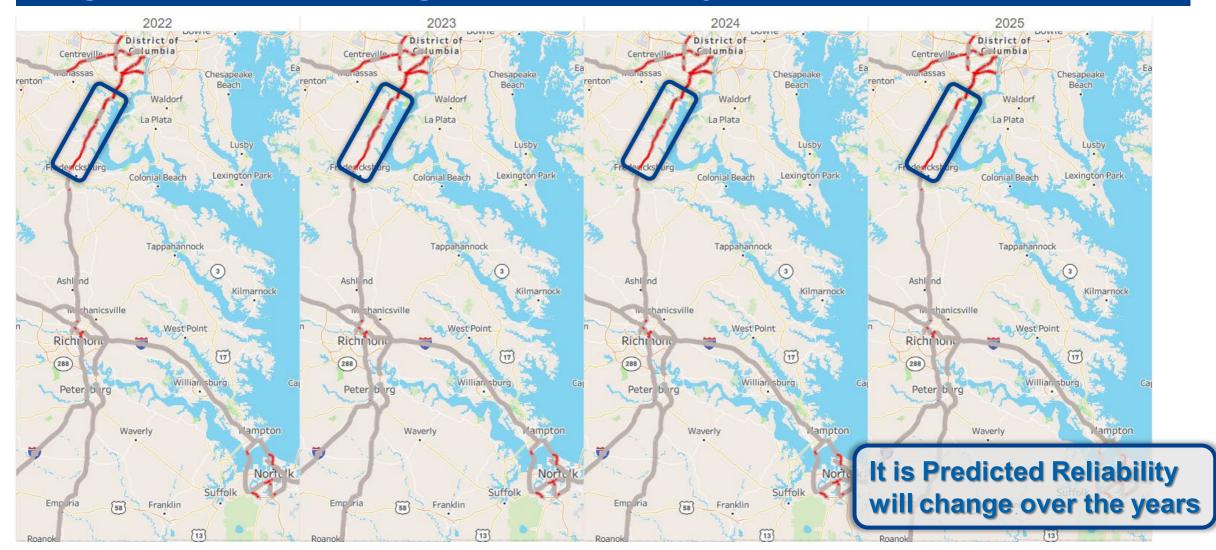
- Six Year Improvement Program Projects - Completion between 2022 and 2025
 - Add Capacity
 - Extend acceleration /deceleration lanes

Project Type	2022 miles	2023 miles	2024 miles	2025 miles
Add Capacity	48.96	78.34	135.7	142.36
Extend accel/decel lane	27.29	45.9	47.4	47.44
Total	76.25	124.25	183.14	189.8

Prepare Future Year Data

Prepare Future Year Data

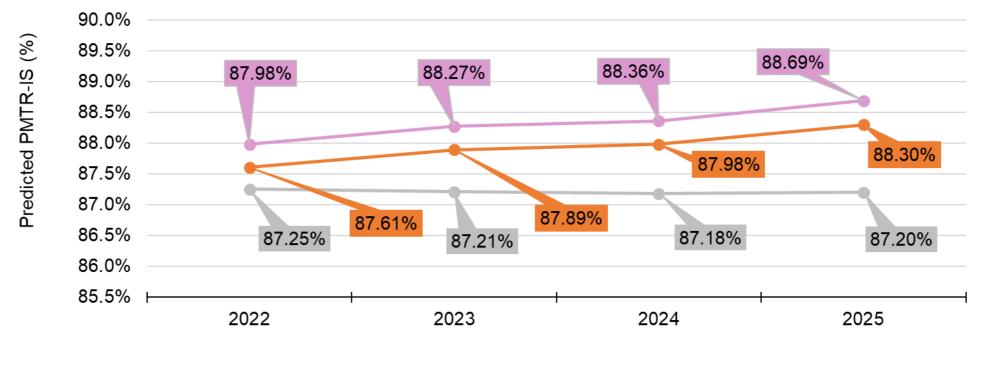
- Crashes
 - Predict Future year total crashes by segment using SPF (Safety Performance Function) model developed by VDOT's Safety group
 - Model = power function by site type using segment length and estimated future AADT
 - Site types characterized by number of lanes, urban/rural, internal/external
 - Predict total daily crashes, calibrate, apply crash fraction by period


Prepare Future Year Data

Prepare Future Year Data

- Volume to Capacity Ratio
 - AADT based on most recent year and VMT growth factors
 - Use future year number of lanes based on projects
- Other influencers
 - Weather, Incidents average of historical
 - SSP, Terrain, Urban category constant, latest available values

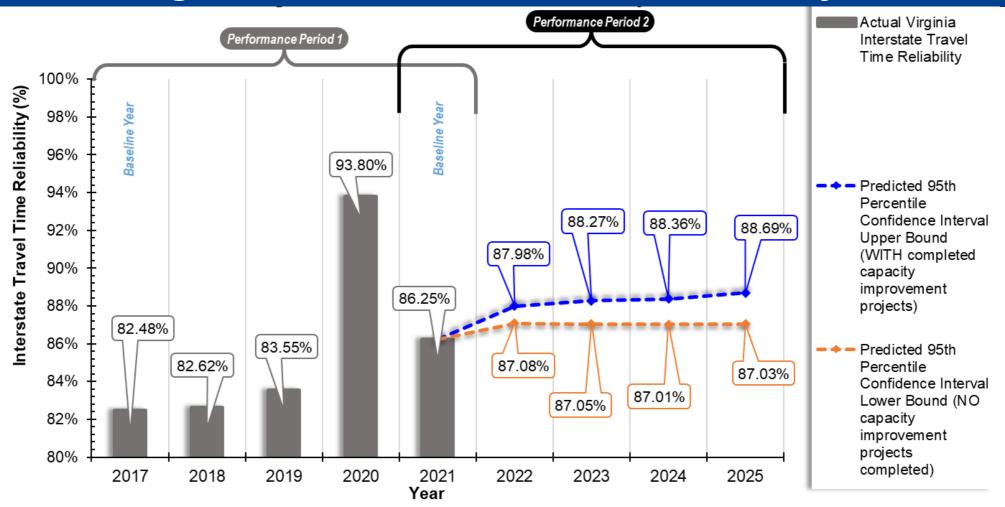
Virginia Predicted Segment Reliability 2022-2025


Unreliable

Predict Target

PMTR-IS Prediction – Statewide

Predicted Interstate Travel Time Reliability Measure in Virginia Lower and Upper Bounds of Prediction


----Predicted PMTR-IS Lower Bound ----Predicted PMTR-IS Upper Bound

Predicted Likely PMTR-IS

* WITH completed capacity improvement projects

Predict Target

Predicted Virginia Interstate Travel Time Reliability Measure

Predict Target

Predicted Interstate Travel Time Reliability Measure by MPO

МРО	2022		2023		2024		2025	
		95th % Cl		95th % Cl		95th % Cl		95th % Cl
		Project	Lower Bound No Project	Project	No Project	Upper Bound Project	Lower Bound No Project	Upper Bound Project
FRED	67.57%	75.08%	67.19%	80.55%	67.10%	79.84%	67.09%	79.51%
НАМР	94.98%	95.95%	94.87%	95.86%	94.87%	95.77%	94.80%	95.58%
NOVA	65.12%	66.58%	65.07%	66.47%	64.96%	67.05%	64.99%	68.30%
RICH	96.97%	97.41%	96.98%	97.37%	97.04%	97.33%	97.21%	97.48%
BRIS, CVIL, HAR, NRV, ROAN, SAW, TCAT, and WINC	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%

Target Setting Methodology for Percent of Person Miles Traveled on the Interstate that are Reliable – Summary

- Random Forest Machine Learning Algorithm can be used
- The independent variables can be influenced by factors not in our control that can have impact on the predicted number e.g.:
 - Unexpected change in Growth due to Land Use change
 - Redefining of Urban Category based on Census results
 - Change in Travel Pattern due to Pandemic Impact
 - Other unexpected shifts...
- Target Setting: It is recommended to consider a short range of oscillation for prediction

Model Use

- The Model created with the Machine Learning technique, and using 30 independent variables produces results that are close to actual Interstate Travel Time Reliability
- The model shows sensitivity to local changes in network
 - □ The Model can be used at MPO level for setting MAP-21 Targets, however verification and MPO input is necessary
 - Potential impact of other variables can be tested including impact of long term Work Zones (if any)

Reliability Performance Measures for Virginia

Virginia needs appropriate Reliability Measures to:

- Compare Improvement Alternatives
- Capture Benefits of Traffic Management
- Be sensitive to Investment Strategies
- Assess System Performance in Virginia

Reliability Performance Measures for Virginia

Why not MAP-21 Travel Time Reliability Measure for Virginia?

- Large Time Periods (4/6/10 hrs) mask hourly Reliability fluctuations
- One calendar year span masks seasonal variations
- Limited Geographical Scale (Statewide and MPO)
- LOTTR metric is NOT always appropriate for use because of Virginia's unique:
 - Congestion characteristics, and
 - Improvement projects

Reliability Performance Measures for Virginia

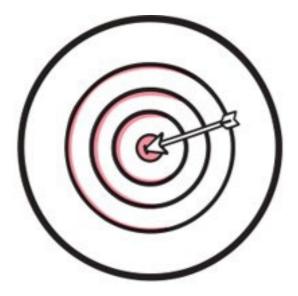
How MAP-21 Travel Time Reliability Measure Reporting and Target Setting helped Virginia?

- Aided in institutionalizing Reliability as a required Performance Measure in Virginia
- Help move the story from managing congestion to managing reliability
- Setting Targets help in accountability and achieving goals
- **Use Prepared Data and Model for Virginia Specific Measures:**
 - Test potential metrics and thresholds
 - Test sensitivity of proposed Measures

Acknowledgments

- Mena Lockwood
- Margie Ray
- Katie Felton
- Allan Yue
- Michael Fontaine
- Ramkumar
 - Venkatanarayana

Questions?


Sanhita Lahiri, P.E., PTOE Data and System Analysis Manager Sanhita.Lahiri@VDOT.Virginia.gov

Simona Babiceanu Data Scientist Simona.Babiceanu@VDOT.Virginia.gov

Discussion

- What challenges or benefits have you found with your method of target setting?
- Do you or your agency wish to use a different method but face a barrier?
- Have you been able to leverage the target setting or performance review process to bring about new actions to address performance?
- What elements have made the process more effective/ meaningful?
- Have agencies set increasing (worsening) targets and still missed them?
- How have you successfully communicated your targets to your
 MPOs? Leadership? The public?

